K-Medoids algorithm used for english sentiment classification in a distributed system

dc.contributor.authorVo, Ngoc Phu
dc.contributor.authorVo, Thi Ngoc Tran
dc.date.accessioned2024-08-21T08:21:41Z
dc.date.available2024-08-21T08:21:41Z
dc.date.issued2018-01-30
dc.description20 tr.
dc.description.abstractIn this research, we have proposed a new model for Big Data sentiment classification in the parallel network environment – a Cloudera system with Hadoop Map (M) and Hadoop Reduce (R). Our new model has used a K-Medoids Algorithm (PAM) with multi-dimensional vector and 2,000,000 English documents of our English training data set for English document-level sentiment classification. Our new model can classify sentiment of millions of English documents based on many English documents in the parallel network environment. However, we tested our new model on our testing data set (including 1,000,000 English reviews, 500,000 positive and 500,000 negative) and achieved 85.98% accuracy.
dc.identifier.urihttps://oerrepository.ntt.edu.vn/handle/298300331/56
dc.language.isovi_VN
dc.publisherTrường Đại học Nguyễn Tất Thành
dc.subjectComputer and information
dc.subjectTechnologies
dc.titleK-Medoids algorithm used for english sentiment classification in a distributed system
dc.typeArticle
Các tập tin
Gói ban đầu
Đang hiển thị 1 - 1 trong tổng số 1
Đang tải...
Hình ảnh thu nhỏ
Tên
K-MedoidsAlgorithmUsed_K_D.pdf
Kích thước
664.09 KB
Định dạng
Adobe Portable Document Format
Mô tả
Gói giấy phép
Đang hiển thị 1 - 1 trong tổng số 1
Đang tải...
Hình ảnh thu nhỏ
Tên
license.txt
Kích thước
1.71 KB
Định dạng
Item-specific license agreed to upon submission
Mô tả