A Reformed K-Nearest Neighbors Algorithm for Big Data Sets
Các tập tin
Ngày
2018-03-08
Tác giả
Vo, Ngoc Phu
Vo, Thị Ngoc Tran
Tên Tạp chí
Tạp chí ISSN
Nhan đề tập
Nhà xuất bản
Trường Đại học Nguyễn Tất Thành (Tạp chí Khoa học công nghệ NTT)
Giấy phép
Tóm tắt
In This Research, We Propose An Improvement To K-NN To Process Big Datasets In A Shortened Execution Time. The Reformed K-Nearest Neighbors Algorithm (R-K-NN) Can Be Implemented On Large Datasets With Millions Or Even Billions Of Data Records. R-K-NN Is Tested On A Data Set With 500,000 Records. The Execution Time Of R-K-NN Is Much Shorter Than That Of K-NN. In Addition, R-K-NN Is Implemented In A Parallel Network System With Hadoop Map (M) And Hadoop Reduce (R).
Mô tả
13 tr.
Từ khóa
K-Nearest Neighbors Algorithm , Parallel Network Environment , Distributed System